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Abstract

Resource-efficient cryptographic primitives become fundamental for realizing both security and
efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight
block cipher plays a major role as a building block for security protocols. In this paper, we describe a
new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained
devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has ad-
vantage in the software performance on legacy sensor platforms, while its hardware implementation
can be compact as well.
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1 Introduction

With the development of wireless communication and embedded systems, we become increasingly de-
pendent on the so called pervasive computing; examples are smart cards, RFID tags, and sensor nodes
that are used for public transport, pay TV systems, smart electricity meters, anti-counterfeiting, etc.
Among those applications, wireless sensor networks (WSNs) have attracted more and more attention
since their promising applications, such as environment monitoring, military scouting and healthcare.
On resource-limited devices the choice of security algorithms should be very careful by consideration of
the implementation costs. Symmetric-key algorithms, especially block ciphers, still play an important
role for the security of the embedded systems. Moreover recent results have shown that a lightweight
block cipher can be used not only for encryption, but also for hash [3] and authentication [20] on devices
with highly constrained resources. For security and performance concerns, some types of sensors are
equipped with hardware implementation of AES-128 [12], e.g. the Chipcon CC2420 transceiver chip
[5]. But for resource-constrained devices, AES could be too expensive, despite the various approaches
that have been proposed to reduce the costs of AES hardware and software implementations [19, 24, 29].

In the literature, quite a few lightweight block ciphers with various design strategies have been pro-
posed [2, 11, 15, 21, 31, 33, 38]. Skipjack is a lightweight block cipher designed by the U.S. National
Security Agency (NSA) for embedded applications [38]. The algorithm of Skipjack has an 80-bit key
with a 64-bit block length based on an unbalanced Feistel network. NOEKEON is a hardware-efficient
block cipher, which is proposed by Daemen et al. [11] and submitted to the NESSIE project in 2000.
HIGHT was designed by Hong et al. [21] as a generalized Feistel-like cipher, which is suitable for low-
resource devices. mCrypton [33] is designed by following the overall architecture of Crypton [32] but
with redesign and simplifications of each component function to enable much compact implementation
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in both hardware and software. At FSE’07, Leander et al. [31] proposed a family of new lightweight
variants of DES, which are called DESL\DESX\DESXL. The main idea of the new variants of DES is to
use just one S-box recursively, instead of eight different S-boxes. Bogdanov et al. proposed [2] an ultra-
lightweight block cipher which is called PRESENT. The design of PRESENT is extremely hardware
efficient, since it uses a fully wired diffusion layer without any algebraic unit. KATAN and KTANTAN
are designed as a family of ultra-lightweight block ciphers by De Cannière et al. [15]. Both KATAN and
KTANTAN use an 80-bit key length with 32, 48, or 64-bit block size, while KTANTAN is more compact
in hardware since its key will be unchangeably burnt on devices. In [17], Engels et al. proposed a novel
ultra- lightweight cryptographic algorithm with 256-bit key length and 16-bit block size, referred to as
Hummingbird, for resource-constrained devices.

The security of any block cipher should be extensively analyzed before its wide implementation.
Biham et al. have discovered an impossible differential attack on 31 of the 32 rounds [1] of Skipjack.
A truncated differential attack was also published against 28 rounds of Skipjack by Knudsen et al. [27].
Granboulan [22] presented a revised result in the differential analysis of Skipjack. By exploiting its
periodic key schedule, a complementation slide attack is mounted on the full 32 rounds of Skipjack [42].
The attack requires only 232.5 known texts and 244 encryptions of Skipjack. In a NESSIE report, Knudsen
and Raddum [26] showed that “indirect mode” NOEKEON was still vulnerable to certain peculiar kinds
of related-key cryptanalysis, and discovered weaknesses in NOEKEON-variant ciphers which cast doubt
on the design strategy behind NOEKEON and thus on its security. As a result NOEKEON was not
selected by NESSIE. Although PRESENT has a hardware-efficient diffusion layer, different attacks have
been applied to PRESENT due to its diffusion property, e.g. the weak key attack [39, 40], the linear
attack [6] and the saturation attack [7]. Recently, Bogdanov and Rechberger [4] have proposed a meet-
in-the-middle attack on KTANTAN. It remains a challenging work to design a lightweight block cipher
which has a good security margin and resists all known attacks.

The performance of a block cipher is also an important factor for resource-constrained devices. Most
of the lightweight proposals claim their efficiency in hardware. The area in Gate equivalents (GE) is
often used as a measure for the compactness of the hardware implementation. Generally speaks, one GE
is equal to the area which is required by two-input NAND gate with the lowest driving strength of the
appropriate technology [41]. PRESENT, for example, has a compact implementation with 1570 GE in a
64-bit width datapath [3], as well as an very lightweight implementation with 1000 GE [43]. mCrypton
and DESXL are also competitive since they are close to the 2000 GE barrier. HIGHT is less attractive
since its area in GE is over 3000 GE, which is close to the best AES implementation [23] (with 3100 GE)
and [19] (with 3400 GE). KATAN and KTANTAN are the most hardware-efficient block ciphers which
require less than 1000 GE [15].

Usually, sensors have better power and hardware capabilities than RFID tags. Since software im-
plementations have the advantages of flexibility and economy in manufacture and maintenance, it is
believed that software-efficient block ciphers are more practical for sensors. In this paper, a new family
of block ciphers called KLEIN is designed for resource-constrained devices. Compared to the related
proposals, KLEIN has the advantage of the software performance on legacy sensor platforms and at the
same time its hardware implementation can also be compact. Our security analysis shows that KLEIN
has a conservative security margin against various cryptanalyses.

The remainder of this paper is organized as follows. Section 2 and 3 describe the design rationale
and the specification of the KLEIN family. In Section 4, the security of KLEIN is analyzed by consid-
ering known attacks. Compared to related lightweight proposals, a detailed performance of KLEIN is
discussed in Section 5. Section 6 concludes the paper.
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2 Design Rationale

In this section we discuss the design rationales and the choices we have made when designing KLEIN
families.

Key Length. KLEIN is a family of block ciphers, with a fixed 64-bit block size and a variable key
length - 64, 80 or 96-bits. According to the different key length, we will denote the ciphers by KLEIN-
64/80/96, respectively. It is well-known that the key length and the block size are two important factors
for a block cipher in the trade-offs between security and performance. Considering the performances
in low-resource implementations, key registers and intermediate results have a significant effect on its
footprint. Moreover, in ubiquitous computing, data flows are unlikely to be a high-speed throughput,
which means a large block size or key length might be unnecessarily for data encryption and authentica-
tion. For security concerns, 64-bit key length might be vulnerable if one considers attack models based
on pre-computation and large amounts of available storage. We recommend KLEIN-64 to be used for
constructing single (double) block length hash functions or message authentication codes and KLEIN-80
and KLEIN-96 to be used for data encryption in any of the operation modes.

Optimal Platform. In practice, most of lightweight block ciphers are hardware-oriented, which is nec-
essary in low-end devices such as smart cards and RFID tags. Compared to hardware-oriented designs,
software implementations have more flexibility and lower costs on manufacturing and maintaining. The
manufacturing costs are cut down to the minimum if the underlying platform can support the compu-
tation and the memory of a software implementation. For software-oriented implementations, once a
lightweight block cipher is implemented, then it can be used for constructing hash functions and mes-
sage authentication codes. Later in case necessary the implementation can be easily refined by updat-
ing the software. Hardware implementations are usually preferable in applications where high-speed
throughputs or constrained resources are imposed. Otherwise, e.g. for legacy sensors such as IRIS
[8] and TelosB [9], software implementations are recommended. This arguments motivate us to work
on a software-oriented design, which will be more suitable for sensors. However, KLEIN can also be
efficiently implemented in hardware. KLEIN remains lightweight in both hardware and software imple-
mentations as we will demonstrate later in the paper.

Critical Threats. First of all, a block cipher should be secure against conventional cryptanalyses, such
as differential and linear attacks. Besides the conventional cryptanalyses, a good design for resource-
constrained devices should also counteract related-key and side-channel attacks. Usually low-resource
applications cannot afford a truly random, or a complicated pseudorandom number generator for initial-
izing keys. Furthermore, hardware implementations of block ciphers are still vulnerable to side-channel
attacks. Even if a block cipher is secure against mathematical attacks, attackers may recover keys from
side-channel information, e.g. differential power analysis from a compromised sensor node. The extra
costs paid on the protection of hardware attacks, e.g. the masking and re-keying techniques, might be
acceptable in normal environment. But for low-resource implementations, the protection costs should
be as small as possible. The side-channel leakage of masked CMOS gates [34] exploits that it is not
a trivial work to provide a secure hardware implementation. KLEIN has a well balanced key schedule
with respect to resistance against related-key attacks and the agility of the keys. Also the secret sharing
method for the resistance of side-channel attacks [37] will be discussed in our design.

3 Specification of KLEIN

In this section we specify the cipher structure of KLEIN. Also the design principles will be discussed,
which are followed during the design process of KLEIN. For each of the components of KLEIN, our
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choices will be motivated to achieve the well balanced trade-off between performance and security. The
test vectors of KLEIN can be found in Appendix A.

3.1 Structure of KLEIN

The structure of KLEIN is a typical Substitution-Permutation Network (SPN), which is also used in
many advanced block ciphers, e.g. AES and PRESENT. In our first estimation for obtaining a reasonable
security margin and asymmetric iteration, we choose the number of rounds NR as 12/16/20 for KLEIN-
64/80/96 respectively. A high-level description of the KLEIN encryption routine is described in Figure
1.

sk1 ← KEY;
STATE ← PLAINTEXT;
for i = 1 to NR do

AddRoundKey(STATE, ski);
SubNibbles(STATE);
RotateNibbles(STATE);
MixNibbles(STATE);
ski+1 = KeySchedule(ski, i);

end for
CIPHERTEXT ← AddRoundKey(STATE, skNR+1);

Figure 1: The encryption routine of KLEIN.

Note that many lightweight block ciphers are proposed to use only the counter mode and hence, the
implementation costs of decryptions can be avoided. In the design of KLEIN, its lightweight property
should also take the decryption algorithm into consideration without fixing on any cipher mode.

3.2 The Round Transformation

The input and output of KLEIN are considered to be one-dimensional arrays of bytes. During the round
transformation, all the operations can be optimized with byte-oriented algorithms. Appendix B graphi-
cally outlines the round transformation of KLEIN.

3.2.1 The SubNibbles Step

Before the SubNibbles step, the input text will be xored with the i-th round key ski, where i ∈ [1, NR].
In the SubNibbles step, the xored results will be divided into 16 of 4-bit nibbles and input to the same 16
S-boxes. The KLEIN S-box S is a 4 × 4 involutive permutation. The non-linear permutation executed
by S is described in Table 1. The implementation costs of such a 4-bit S-box is much lower than that of
an 8-bit S-box either by hardware or by software. By choosing an involutive S-box, we can also save the
implementation costs for its inverse. Since the same S-boxes are used in the SubNibbles step, it allows
a serialization of the design for an extremely small footprint. Moreover, we just need to provide one
single side-channel protection for the S-box. Thus the overhead of an extra protection on its inverse is
unnecessary.

Table 1: The 4-Bit S-box used in KLEIN.
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5
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Since the SubNibbles step is the only non-linear layer in KLEIN, a natural requirement is an optimal
resistance against linear and differential cryptanalyses. Therefore the choice of the S-box S fulfills the
following conditions.

1. The S-box satisfies S(S(x)) = x, x ∈ F4
2, thus it can be used both in the encryption and in the

decryption.

2. The S-box has no fixed points, i.e. S(x) 6= x, x ∈ F4
2.

3. For any non-zero input difference ∆I ∈ F4
2 and output difference ∆O ∈ F4

2, it holds that

]{x ∈ F4
2|S(x) + S(x + ∆I) = ∆O} ≤ 4. (1)

Furthermore, if wt(∆I) = wt(∆O) = 1, we have

]{x ∈ F4
2|S(x) + S(x + ∆I) = ∆O} ≤ 2. (2)

4. For any non-zero a, b ∈ F4
2, it holds that

|SWb (a)| = |
∑

x∈F4
2

(−1)b·S(x)+a·x| ≤ 8. (3)

Furthermore, if wt(a) = wt(b) = 1, we have

|SWb (a)| = |
∑

x∈F4
2

(−1)b·S(x)+a·x| ≤ 4. (4)

The 4-bit S-box used in PRESENT satisfies ]{x ∈ F4
2|S(x) + S(x + ∆I) = ∆O} = 0 if wt(∆I) =

wt(∆O) = 1, which assures a better avalanche effect [2]. However, the PRESENT S-box is not an
involution. According to our exhaustive search result, there is no such an involutive 4-bit S-box that can
satisfy this additional property. Let x = x3||x2||x1||x0 denote the 4-bit input to the S-box S and let
S(x) = y3||y2||y1||y0. By using the algebraic normal form (ANF), the KLEIN S-box can be represented
by the following Boolean functions.

y0 = 1 + x0 + x1 + x3 + x0x2 + x1x2 + x1x3 + x0x1x2 + x0x1x3

y1 = 1 + x0 + x2 + x3 + x1x2 + x1x3 + x2x3 + x0x1x3 (5)

y2 = 1 + x1 + x2 + x0x2 + x1x2 + x0x3 + x0x1x2 + x0x2x3 + x1x2x3

y3 = x1 + x3 + x0x2 + x0x3 + x0x1x3 + x1x2x3

The differential distribution and the linear approximation of the KLEIN S-box are given in Appendix
B. For each input differential ∆I , the maximum probability of any output differential ∆O is up to 4/16 =
2−2. Let p be the probability of a linear characteristic. The correlation of the linear characteristic over
S is given by q = (2p − 1)2 [35]. From the input-output correlation of S, it is straightforward that any
linear characteristic over S has a correlation of at most (2× 4

16 − 1)2 = 2−2.

3.2.2 The RotateNibbles Steps

During the i-th round where i ∈ [1, NR], 16 nibbles bi
0, b

i
1, · · · , bi

15 will be rotated left two bytes per
round, which is illustrated in Figure 2. The inverse operation will be simply rotate right two bytes per
round. Nevertheless, the RotateNibbles step can also be combined with the MixNibbles step to avoid the
hardware or software costs.
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Figure 2: The RotateNibbles step.

3.2.3 The MixNibbles Step

The MixNibbles step is a bricklayer permutation of the state. The i-th round input nibbles {ci
0, c

i
1, · · · , ci

15}
will be divided into 2 tuples, which will be proceeded the same as the MixColumns step in Rijndael. The
tuples of the state are considered as polynomials over F8

2 and multiplied modulo x4 + 1 with a fixed
polynomial c(x) = 03 · x3 + 01 · x2 + 01 · x + 02. The inverse is also a fixed multiplication polynomial
d(x) = 0B · x3 + 0D · x2 + 09 · x + 0E. The output of the MixNibbles step will be the intermediate state
si+1 for the next round transformation, which can be represented by the following matrix equations.




si+1
0 ||si+1

1

si+1
2 ||si+1

3

si+1
4 ||si+1

5

si+1
6 ||si+1

7


 =




2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


×




ci
0||ci

1

ci
2||ci

3

ci
4||ci

5

ci
6||ci

7


 ,




si+1
8 ||si+1

9

si+1
10 ||si+1

11

si+1
12 ||si+1

13

si+1
14 ||si+1

15


 =




2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


×




ci
8||ci

9

ci
10||ci

11

ci
12||ci

13

ci
14||ci

15


 .

Note that the balance between the diffusion property and the software performance let us make this
choice. Although bit-shifting operations are often used in the diffusion layer of many lightweight block
ciphers (e.g. PRESENT and NOEKEON), it actually loses the efficiency in software implementations.
From the number of active Sboxes, it seems a better choice that the MixNibbles step chooses a matrix
multiplication in GF (24). However, a byte-oriented matrix multiplication has advantage in the soft-
ware implementations for 8-bit processors (e.g. Skipjack). By using the similar implementation of the
MixColumns step for 8-bit processors [12], we can use just one 256-byte look-up table to optimize the
MixNibbles step. Also the same look-up table can be used to optimize its inverse. After the 12/16/20
rounds of KLEIN-64/80/96, the MixNibbles step can still provide a high number of active Sboxes for
the security of KLEIN. The property of the MixColumns step of Rijndael has been well-analyzed, the
details can be found in the literature [10, 12, 14].

3.2.4 Key schedule

For round transformations, all practical block ciphers use varied key schedules to expand a relative small
master key to a series of dependent round keys. Since KLEIN will be used to construct block-cipher-
based hash functions and message authentication codes, the key schedule should be agile even if keys
are frequently changed. On the other hand, the key schedule should also consider a proper complexity
for the security. To avoid the potential related-key weakness whilst balancing the performance, the key
schedule of KLEIN is designed as follows.

1. Input: a 64/80/96-bit master key mk for KLEIN-64/80/96.

2. Key scheduling: Let i be the round counter of KLEIN-64/80/96. In the first round so that i = 1,
the initial subkey sk1 = mk = sk1

0||sk1
1|| · · · ||sk1

t where t = 7/9/11 for KLEIN-64/80/96. For
KLEIN-64, the (i + 1)-th subkey ski+1 can be derived from the i-th subkey ski as follows.
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(a) Divide the i-th subkey ski into two byte-oriented tuples, such that a = (ski
0, sk

i
1, · · · , ski

b t
2
c)

and b = (ski
d t
2
e, sk

i
d t
2
e+1

, · · · , ski
t) for the next step. For KlEIN-64, we have a = (ski

0, sk
i
1, sk

i
2, sk

i
3)

and b = (ski
4, sk

i
5, sk

i
6, sk

i
7).

(b) Cycling left shift one byte position in (a, b), obtain a′ = (ski
1, · · · , ski

b t
2
c, sk

i
0) and b′ =

(ski
d t
2
e+1

, · · · , ski
t, sk

i
d t
2
e) for the next step. For KLEIN-64, we have a′ = (ski

1, sk
i
2, sk

i
3, sk

i
0)

and b′ = (ski
5, sk

i
6, sk

i
7, sk

i
4).

(c) Swap the tuple (a′, b′) with a Feistel-like structure, such that a′′ = b′ becomes the left tuple,
whilst b′′ = a′ ⊕ b′ becomes the right tuple.

(d) Xor round counter i with the third byte in the left tuple a′′, and substitute the second and the
third bytes of the right tuple b′′ by using the KLEIN S-box S.

3. Output: iteratively execute the above step for different key lengths, truncate the leftmost 64 bits of
subkey ski for the i-th round transformation.

Figure 3: The KeySchedule algorithm of 64-bit key length.

Figure 3 illustrates the KeySchedule algorithm of KLEIN-64. The key schedule of KLEIN is feasible
for different key sizes. To save the memory for storing intermediate values, the subkeys of KLEIN can be
generated during each round transformation. During the performance tuning on sensors, we observed that
the on-the-fly key schedule of KLEIN is more resource-efficient than the traditional optimization such
that all subkeys are computed in advance. Also the Feistel-like structure provides more complexities to
resist weak key attacks, which was found on the PRESENT block cipher recently [6, 39]. For simplicity,
we only use an incremental round counter as the additive constant to avoid the slide attack. Like some
other block cipher schemes, those round counters in KLEIN can also be defined by a recursion rule or a
LFSR sequence in GF (28) to avoid the potential complementation properties.

4 Security Analysis

In this section we will present a security analysis of KLEIN, showing its resistance against various
cryptanalytic attacks.
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4.1 Linear and Differential Attacks

The resistance of linear and differential attacks of a block cipher is mainly based on the branch num-
ber, i.e. the number of active S-boxes in a certain number of rounds. In Rijndael, the authors use the
Maximum Distance Separable (MDS) code to achieve the maximal branch number in a small number of
rounds. By combining the RotateNibbles and MixNibbles steps, KLEIN can achieve a balance between
the minimum number of active S-boxes and the software performance for resource-constrained devices.

Theorem 1 Any four-round differential characteristic of KLEIN has a minimum of 15 active S-boxes.

Proof. The MixColumns step in Rijndael is based on an Maximum Distance Separable code and the
distance between any two distinct words called branch number is 5 [12]. Since we use the same matrix
multiplication in the MixNibbles step of KLEIN, the branch number of MixNibbles is also 5. Since
MixNibbles is computed with multiplications in GF (28), an active byte in the diffusion layer of KLEIN
implies one or two nibbles (i.e. the leftmost and the rightmost 4 bits) are active. For simplicity, we
assume every active byte only has one active nibbles. Let ∆i = Li||Ri be the i-th round input difference
characteristic, where Li and Ri denote the left and the right 4-byte tuples respectively. The differential
patterns of four-round KLEIN can be analyzed as follows.

• If there is 1 non-zero byte in L1, it will be at least one active S-box in the first round. After the
Rotate and MixNibbles, the difference will be propagated to 4 bytes either in the left or the right
4-byte tuple. Thus ∆2 will have minimum 4 active S-boxes in the second round. For simplicity,
we assume L2 contains 4 active bytes while R2 remains zero. After the RotateNibbles step, both
the left and the right tuples will have 2 active bytes. Since the branch number of MixNibbles is
5, the minimum number of active bytes with the differential characteristic ∆3 will be 6. After
RotateNibbles in the third round, if the active bytes in L3 is 2 or 3, R3 will have 4 or 3 active bytes
respectively. In either of the situations, ∆4 will have minimum 3+1 or 2+2 active bytes. In this
general case, the minimum active S-boxes after four rounds are 1 + 4 + 6 + 4 = 15.

• If there is 2 non-zero bytes in L1, the difference will be propagated to at least 3 bytes after MixNib-
bles. For simplicity, we assume that L2 contains 3 active bytes while R2 remains zero. After Ro-
tateNibbles, the active bytes in L2 is 1 or 2, while R2 will have 2 or 1. Since the branch number of
MixNibbles is 5, the minimum number of active bytes with the differential characteristic ∆3 will
be 7. After RotateNibbles in the third round, if the active bytes in L3 is 3 or 4, R3 will have 4 or
3 active bytes respectively. In either of the situations, ∆4 will have minimum 2+1 or 1+2 active
bytes. In this general case, the minimum active S-boxes after four rounds are 2 + 3 + 7 + 3 = 15.

• In the case of 3 (or 4) active bytes in L1, the difference patterns of the first three rounds will be
identical to the case of 2 active bytes in the last three rounds. The minimum active bytes after three
rounds are 3 + 7 + 3 (or 4 + 6 + 4). In the third round, first we choose all 3 (or 4) active bytes
are moved to L3 after RotateNibbles. After MixNibbles, the active bytes will be at least 2 (or 1)
since the branch number is 5. In any other choice, the active bytes in the forth round will be no
less than 2 (or 1). Thus the minimum active S-boxes after four rounds are 3 + 7 + 3 + 2 = 15 (or
4 + 6 + 4 + 1 = 15) in this general case.

Without loss of generality, the same differential patterns will be followed where all active bytes are
in R1. If both L1 and R1 have one or more active bytes, it is straightforward that the minimum number
of active S-boxes will be no less than 15. Thus any four-round differential characteristic of KLEIN has a
minimum of 15 active S-boxes. ¤
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In RotateNibbles and MixNibbles, if we choose operations over GF (24) for the MDS code, the
active S-boxes in a four-round differential characteristic can be lower bounded by 25. Although a higher
number of active S-boxes means KLEIN can use less rounds to be secure, our tuning experiments in
sensors show that the software performance will be sacrificed by operations over GF (24) (e.g. bit-
shifting from leftmost to rightmost). However, it always requires a trade-off between the performance
and the security. For ultra-lightweight in hardware, any differential characteristic of PRESENT has only
10 active S-boxes after 5 rounds.

In Rijndael, the coefficients of the MixColumns step are selected for assuring that both the dif-
ferential branch number and the linear branch number are equal to 5. Based on the combination of
RotateNibbles and MixNibbles, KLEIN also has the same property on the branch numbers. Therefore
the minimum number of active S-boxes in a four-round linear approximation can be derived from the
four-round differential propagation result of KLEIN. For brevity, the proof is omitted here.

Theorem 2 Any four-round linear approximation of KLEIN has a minimum of 15 active S-boxes.

The strength of a cipher against differential attacks is reflected by the maximum probability of
differential , i.e. a collection of characteristics. However, in cryptanalysis we often assume that one
characteristic has a much larger probability than the other characteristics of the differential. Thus a
characteristic with the maximum probability is taken as an estimate of the probability of the differential.
Similar assumptions can be found in linear attacks as well. Based on the minimum active S-boxes of
characteristics in certain rounds, we can also derive the resistance of the differential and linear attacks on
KLEIN. Since any differential characteristic over the KLEIN S-box has a maximum 2−2 possibility, the
security against differential attacks of KLEIN-64 can be estimated as follows.

Lemma 1 Let εd
12R be the maximum probability of a differential characteristic of 12 rounds of KLEIN-

64. Then εd
12R ≤ (2−2)12×15/4 ≈ 2−90.

Since any linear characteristic over the KLEIN S-box has a correlation 2−2, the security against
linear attacks of the full-round KLEIN-64 is described as follows.

Lemma 2 Let εl
12R be the maximal bias of a linear approximation of 12 rounds of KLEIN-64. Then

εl
12R ≤ (2−2)12×15/4 ≈ 2−90.

By following the similar analysis, we note that the security of KLEIN-80/96 against linear and
differential attacks can be gauged with the rounds 16/20.

Lemma 3 Let εd
16R be the maximum probability of a differential characteristic of 16 rounds of KLEIN-

80. Then εd
16R ≤ (2−2)16×15/4 ≈ 2−120.

Lemma 4 Let εl
16R be the maximum bias of a linear approximation of 16 rounds of KLEIN-80. Then

εl
16R ≤ (2−2)16×16/4 ≈ 2−120.

Lemma 5 Let εd
20R be the maximum probability of a differential characteristic of 20 rounds of KLEIN-

96. Then εd
20R ≤ (2−2)20×15/4 ≈ 2−150.

Lemma 6 Let εl
20R be the maximum bias of a linear approximation of 20 rounds of KLEIN-96. Then

εl
20R ≤ (2−2)20×15/4 ≈ 2−150.

From the above results, we assure that KLEIN families have a good security margin in the full
rounds. The extra security margin of a block cipher may benefit the lightweight design of block-cipher-
based hash functions or message authentication codes [13, 20].
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4.2 Key Schedule Attacks

Since there are no established guidelines for the design of key schedules, both a wide variety of designs
and a wide variety of schedule-specific attacks have been proposed. The most effective attacks come
under the general heading of related-key attacks and slide attacks, and both rely on the build-up of
identifiable relationships between different sets of subkeys. To counter this threat, we use a round-
dependent counter so that the subkey sets cannot easily be symmetric. We also use the same KLEIN
S-box to provide the non-linearity of the subkeys whilst saving the implementation costs. For related-
key attacks, we have the following properties for protection.

• For KLEIN-64/80/96, each bit in the key register depends on at least 4 user-supplied bits after
4/5/6 rounds.

• For KLEIN-64/80/96, all the bits in the key register are a non-linear function of the 64/80/96-bit
user-supplied key by 8/10/12 rounds.

4.3 Integral Attack

Integral cryptanalysis are usually applied to exploit vulnerabilities in byte-oriented block ciphers, such
as AES [12]. An integral attack will investigate the propagation of sums of many values, whilst a dif-
ferential attack will consider the propagation of differences between pairs. In a byte-oriented cipher,
the sum of a group differences might be a predictable value after certain rounds. For a better software
performance, the design of KLEIN also adapts a byte-oriented structure like AES. Thus it also faces a
similar vulnerability on integral attacks [28].

First we consider a five-round integral attack on KLEIN, which is based on the attack given by
Knudsen and Wagner on AES [28]. The attacker chooses a group of 256 plaintexts, which have equal
values in all bytes except one. According to the mathematic properties of the RotateNibbles and MixNib-
bles steps, the sum of 256 bytes will be zero after three rounds of encryption. Then the attacker will guess
4 key bytes in the fourth round and 1 key bytes in the fifth round. If the 4+1 = 5 key bytes are right, the
sum of all 256 values should also be zero after five rounds. For KLEIN-80/96, we can extend the above
attack to six rounds. Thus we need a collection of 232 plaintexts in the first round and guess 4 + 5 = 9
bytes in total. To our best knowledge, any integral attack on KLEIN over eight rounds will be more
complicated than exhaustive key searches or requires the complete code book. Except byte-oriented in-
tegral attacks, One could try nibble-oriented attacks with 16 plaintexts which have equal values except
one nibble. However, since the MixNibbles step is fully based on multiplications in GF (28), the sum
of 16 nibbles is unpredictable after three rounds. Therefore nibble-oriented integral attacks will not be
more feasible than byte-oriented ones.

4.4 Algebraic Attack

The algebraic attack as well as the Cube Attack [16], requires the algebraic form describing the output bits
has a relatively small degree in terms of the input bits being processed. To exploit the algebraic relations
between input and output bits of a block cipher, attackers may consider a subset of input bits whilst leave
the other fixed. In the S-box of KLEIN, every output bit can be represented by a 3-degree polynomial
with 4 input variables in ANF. For total 64 input bits, the complexity of finding the polynomials for
the entire cipher soon becomes too large. In the full-round KLEIN-64, the number of S-boxes in the
encryption and the key schedule equals n = 12 × 16 + 12 × 4 = 240. It is well-known that any 4-bit
S-box can be represented by at least 21 quadratic equations over GF (2). Thus in KLEIN-64, we have
the number of quadratic equations n× 21 = 5040 in n× 8 = 1920 variables. By changing the number
of rounds, similar results can easily be extended to KLEIN-80 and KLEIN-96. In our experiment, we
were unable to transform three-round KLEIN-64 to the ANF equations in a reasonable time.
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4.5 Side-Channel Attack

Since it is easy to add noises and loops in the software implementation of a block cipher to avoid side-
channel attacks, here we will discuss on how to secure the hardware implementation of KLEIN. Except
for the SubNibbles step, KLEIN is completely linear. The S-box of KLEIN can be implemented to resist
side-channel attacks even in the presence of glitches using the secret sharing method proposed by Nikova
et al. [37]. Also the linear part of KLEIN can be securely processed by using independent shares. A
survey of lightweight cryptography and DPA countermeasures [36] estimates that the masking based on
secret sharing will increase the hardware overhead with a factor of 3, which is still promising because it
has a moderate area overhead and was theoretically proven to be secure against DPA attacks [37].

5 Performance

Here we analyze the performance of KLEIN. Based on legacy low-resource sensors TelosB (with 16-bit
TI MSP430 microcontroller) and IRIS with (8-bit ATmega128L microcontroller), a detailed comparison
amongst KLEIN and other candidates is given in Table 2. These two platforms are chosen because of
their opposing characteristics: TelosB has more RAM than IRIS (10 KB vs 8 KB) but IRIS has a larger
Flash memory than TelosB (128 KB vs 48 KB); TelosB’s transceiver CC2420 supports hardware AES
encryption but IRIS does not. For low-resource devices, a lower cost of RAM would be beneficial for
power consumptions and manufactory expenses. Since the CC2420 chip on TelosB also supports AES
hardware encryption, we also test its performance by implementing the standalone AES encryption of
CC2420 [45]. The result shows AES hardware implementation has a great improvement on RAM and
ROM costs, while the processing speed is even lower than the software implementation. We consider this
latency is caused by the fact that the hardware AES encryption function should power up the CC2420
chip on TelosB in advance. The latency might be improved by setting CC2420 in the standby mode, but
the power consumptions will be increased as well.

From a wide range of block ciphers, PRESENT is chosen because it is ultra-lightweight for highly
resource-constrained [3], while Skipjack is proven to be software-efficient for 8-bit processors [30].
Both of them have similar block and key sizes with KLEIN. For Hummingbird encryption, Engels et
al. [17] shows that the speed optimized implementation on 8-bit microcontrollers is about 28.9% slower
than PRESENT encryption when the message length is 64 bits. On 16-bit microcontrollers Hummingbird
achieves around 50% ∼ 78% performance improvements for different message blocks [17]. The KATAN
family ciphers and PRINTcipher, while space-efficient for hardware implementation, are problematic in
software performance. This is because KATAN ciphers utilize bit manipulations extensively, whereas
PRINTcipher operates on 3 bits at a time, which is at odds with existing 8/16/32-bit architectures.

The ciphers are written in nesC for the TinyOS 2.1.1 platform. This version of TinyOS does provide
support for CC2420’s AES, but only in conjunction with radio operations. Support for the so-called
stand-alone mode is provided by Zhu’s code1. The default optimization strategy of TinyOS (“-Os”,
which minimizes size but not at the expense of speed) is applied to all ciphers except software AES and
DESXL on IRIS. For these exceptions, “-O1” and “-O0” are used respectively to bypass compilation
errors. The maximum stack size on TelosB is measured using MSPsim [18]. There is no known tool
for the same purpose on IRIS. The processing speeds are measured in encryption/decryption, whilst
the storage costs are calculated in together. Since there is no such an instruction in TelosB or IRIS can
measure the processing speed by cycles per byte, the speed is compared by using the results of processing
the same 16-byte message in milliseconds. All software implementations are optimized by using look-up
tables, while the tables are stored in ROM for lower RAM costs2.

1http://cis.sjtu.edu.cn/index.php/The Standalone AES Encryption of CC2420 (TinyOS 2.10 and MICAz)
2The source code for the performance comparison can be found at http://eprints.eemcs.utwente.nl/18458/
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Table 2: The software performance of KLEIN and related block ciphers.
Performance on TelosB

Algorithm
Key length

(bit)
Block size

(bit)
RAM
(byte)

ROM
(byte)

Max stack
(byte)

Processing speed
(ms per 16-byte message)

AES-128
(software implementation)

128 128 218 10898 230 1.64/1.67

AES-128
(hardware encryption)

128 128 60 900 116 2.29

NOEKEON
(indirect encryption)

128 128 56 3544 258 2.38/2.43

NOEKEON
(direct encryption)

128 128 56 4224 242 2.38/2.42

DESXL 184 64 186 6966 144 1.86/1.86
Hummingbird 128 16 82 1822 116 4.61/9.69
PRESENT-80

(software encryption)
80 64 288 6424 244 6.6/11.1

PRINTCipher-48 80 48 48 6210 128 28.3/21.3
KATAN-64 80 64 548 2628 202 120/121

mCrypton-64 64 64 248 7816 182 3.4/3.91
mCrypton-96 96 64 248 8026 158 3.4/3.91
mCrypton-128 128 64 248 8748 158 3.4/3.91

Skipjack 80 64 56 1542 130 1.37/1.33
KLEIN-64 64 64 50 2980 186 1.97/2.5
KLEIN-80 80 64 52 3112 178 2.62/3.4
KLEIN-96 96 64 54 3266 182 3.32/4.55

Performance on IRIS

Algorithm
Key length

(bit)
Block size

(bit)
RAM
(byte)

ROM
(byte)

(Processing speed
(ms per 16-byte message))

AES-128
(software implementation)

128 128 295 14216 1.32/1.29

NOEKEON
(indirect encryption)

128 128 111 4472 3.33/3.33

NOEKEON
(direct encryption)

128 128 111 4424 3.33/3.33

DESXL 184 64 306 32186 6.43/5.68
Hummingbird 128 16 159 2646 4.30/9.14
PRESENT-80

(software encryption)
80 64 365 6866 4.06/9.06

PRINTCipher-48 80 48 125 6184 21.6/14.9
KATAN-64 80 64 625 3260 80.5/43.5

mCrypton-64 64 64 355 9768 5.20/4.41
mCrypton-96 96 64 355 10252 5.37/4.41
mCrypton-128 128 64 355 11160 5.49/4.51

Skipjack 80 64 133 2566 0.90/0.90
KLEIN-64 64 64 105 2582 0.96/1.25
KLEIN-80 80 64 107 2672 1.21/1.70
KLEIN-96 96 64 109 2782 1.52/2.11

12



The performance comparison in Table 2 shows that KLEIN is competitive for low-resource appli-
cations, especially suitable for sensors. Although the block processing speeds of KLEIN are slower than
Skipjack, it is a reasonable trade-off for the security margin of KLEIN. Note that the block size of AES
and Noekeon is 16 bytes, while the block size of Hummingbird is 2 bytes. The rest of the candidates
have a block size of 8 bytes. For consistency, the processing speed is compared using the same 16-byte
message.

In KLEIN, the MixNibbles step will be a non-straightforward part of hardware design. Since it is
the same to the MixColumns step of AES, we may simply borrow the idea from AES hardware imple-
mentations. Feldhofer et al. [19] shows a hardware-efficient implementation of the MixColumns step,
which only costs about 340 GE with a 32-bit width. Because the MixNibbles step can be paralleled
by two 32-bit tuples, Feldhofer et al.’s implementation can also be used in KLEIN families. Both of
the RotateNibbles and InterchangeNibbles steps are simple byte-shift operations, which can be imple-
mented with a minimum hardware. Figure 4 shows the architecture of KLEIN-64 encryption with a
64-bit datapath.
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Figure 4: The data path of KLEIN-64 encryption.

For a hardware implementation, a complete-including the analog part-low-cost RFID tag might have
between 1,000 and 10,000 GE, and for security components may occupy up to 2,000 GE [25]. The area
restriction could be looser on sensors. By using TSMC 0.18 µm Process 1.8-Volt SAGE-X Standard
Cell Library, the area in GE of KLEIN families3 is estimated in Table 3. We note that a further area
optimization can be derived by a serialization of the design, i.e. with a 4-bit width datapath.

Table 3: The area in GE of KLEIN and related block ciphers.
Hardware Encryption

Algorithm
Logic process

(µm)
Datapath

(bits)
Area in GE

AES-128
0.11
0.13

32
8

5400 [44]
3100 [23]

PRESENT-80 [3] 0.18
64
4

1570 [3]
1075 [3]

KLEIN-64 0.18
64
8

2032
1360

KLEIN-80 0.18
64
8

2202
1530

KLEIN-96 0.18
64
8

2372
1700

3B. Bilgin et al. Serialized KLEIN for Lightweight Applications. Manuscript.
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6 Conclusion

In this paper, we have proposed a new lightweight block cipher KLEIN. The goal of our design is to pro-
vide a practical and secure cipher for low-resource applications, especially for wireless sensor networks.
Analyzing the security and performance of a block cipher is a complex and time-consuming task even
though our preliminary results have been encouraging. Although KLEIN mainly focuses on software
implementations, it also enjoys hardware efficiency from its simple structure with an involutive S-box.
The various key lengths of KLEIN offer a flexibility and a moderate security level for ubiquitous applica-
tions. Therefore, our design increases the available options of lightweight block ciphers for low-resource
applications.
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[37] S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-linear functions in the
presence of glitches. In P.J. Lee and J.H. Cheon, editors, ICISC 2008, volume LNCS 5461, pages 218–234.
Springer, 2009.

[38] NIST. Skipjack and kea algorithm specifications (version 2.0). NIST online document. Available at
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf, May 1998.

[39] K. Ohkuma. Weak keys of reduced-round present for linear cryptanalysis. pages 249–265. Springer-Verlag,
2009.
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Appendix A. Test Vectors of KLEIN Test vectors for KLEIN-64/80/96 are given in the following tables. Readers
may use it to check the correctness of the code by themselves.

Table 4: Test vectors for KLEIN-64.
Key Message Cipher

0000 0000 0000 0000 FFFF FFFF FFFF FFFF CDC0 B51F 1472 2BBE
FFFF FFFF FFFF FFFF 0000 0000 0000 0000 6456 764E 8602 E154
1234 5678 90AB CDEF FFFF FFFF FFFF FFFF 5923 56C4 9971 76C8
0000 0000 0000 0000 1234 5678 90AB CDEF 629F 9D6D FF95 800E

Table 5: Test vectors for KLEIN-80.
Key Message Cipher

0000 0000 0000 0000 0000 FFFF FFFF FFFF FFFF 6677 E20D 1A53 A431
FFFF FFFF FFFF FFFF FFFF 0000 0000 0000 0000 8224 7502 273D CC5F
1234 5678 90AB CDEF 1234 FFFF FFFF FFFF FFFF 3F21 0F67 CB23 687A
0000 0000 0000 0000 0000 1234 5678 90AB CDEF BA52 39E9 3E78 4366

Table 6: Test vectors for KLEIN-96.
Key Message Cipher

0000 0000 0000 0000 0000 0000 FFFF FFFF FFFF FFFF DB9F A7D3 3D8E 8E36
FFFF FFFF FFFF FFFF FFFF FFFF 0000 0000 0000 0000 15A3 A033 86A7 FEC6
1234 5678 90AB CDEF 1234 5678 FFFF FFFF FFFF FFFF 7968 7798 AFDA 0BC3
0000 0000 0000 0000 0000 0000 1234 5678 90AB CDEF 5006 A987 A500 BFDD
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Appendix B. The round transformation of KLEIN

Figure 5: The round transformation of KLEIN.
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Appendix C. Differential distribution and Linear approximation of KLEIN S-box

Table 7: Differential distribution table of S.PPPPPPP∆I

∆O 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 2 0 2 0 2 0 0 2 0 0 2 2
2 0 0 0 0 0 4 0 0 0 0 2 2 0 4 2 2
3 0 4 0 2 2 0 0 0 0 0 2 0 0 2 4 0
4 0 2 0 2 2 0 2 0 0 2 0 2 0 2 0 2
5 0 0 4 0 0 2 0 2 2 0 2 4 0 0 0 0
6 0 2 0 0 2 0 4 0 2 0 2 2 2 0 0 0
7 0 0 0 0 0 2 0 2 2 2 0 0 2 0 4 2
8 0 2 0 0 0 2 2 2 2 2 0 2 0 0 0 2
9 0 0 0 0 2 0 0 2 2 0 0 2 2 2 2 2
A 0 0 2 2 0 2 2 0 0 0 4 0 2 0 2 0
B 0 2 2 0 2 4 2 0 2 2 0 0 0 0 0 0
C 0 0 0 0 0 0 2 2 0 2 2 0 4 2 0 2
D 0 0 4 2 2 0 0 0 0 2 0 0 2 2 0 2
E 0 2 2 4 0 0 0 4 0 2 2 0 0 0 0 0
F 0 2 2 0 2 0 0 2 2 2 0 0 2 2 0 0

Table 8: Linear approximation table of S.
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 4 4 -4 -4 -4 -4 -4 -4 0 0 8 -8
2 0 0 0 8 -4 -4 4 -4 0 -8 0 0 4 -4 -4 -4
3 0 0 8 0 0 0 8 0 4 -4 -4 -4 -4 4 4 4
4 0 4 -4 0 0 -4 -4 -8 4 0 -8 4 -4 0 0 4
5 0 4 -4 0 -4 8 0 -4 0 -4 4 0 4 8 0 4
6 0 -4 4 8 -4 0 -8 4 4 0 0 4 0 4 4 0
7 0 -4 -4 0 -8 -4 4 0 -8 4 -4 0 0 4 4 0
8 0 -4 0 4 4 0 4 -8 0 4 8 4 -4 0 4 0
9 0 -4 -8 -4 0 -4 0 4 4 -8 4 0 -4 0 4 0
A 0 -4 0 -4 -8 4 0 -4 8 4 0 -4 0 -4 0 -4
B 0 -4 0 -4 4 0 4 0 4 0 -4 8 8 4 0 -4
C 0 0 4 -4 -4 4 0 0 -4 -4 0 8 -8 0 -4 -4
D 0 0 -4 4 0 8 4 4 0 0 -4 4 0 -8 4 4
E 0 8 -4 4 0 0 4 4 4 4 0 0 -4 4 0 -8
F 0 -8 -4 4 4 4 0 0 0 0 -4 -4 -4 4 -8 0
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